
Startup Files

Written by Dave Pawlowski, September 23, 2012

Introduction

Every time a new shell session is started, Linux attempts to read several files that set
certain variables, options, and other things that the system needs or makes your life
easier. These are referred to as startup files. The first startup files that are read are
buried in the /etc/ directory and set things for all users. After that, Linux reads an
individual’s startup files, which are located in your home directory. If you do:

% ls -a

you will may see one or more files that start with ’.’. In particular, the shell will try to
read files called .cshrc (if you are using csh or tcsh), .login, .Xresources,. Xauthority to
name a few. In addition, certain programs may have their own “dot” file. For example,
when emacs starts up, it looks for the file, .emacs. These files don’t have to exist, but
if they do, Linux will read them and execute whatever commands are in them. In this
tutorial we will just talk about .cshrc and .emacs in brief. There are endless possibilities
for what you can put in these things. A good place to start is to just google .cshrc and
copy what someone else uses. The point here is to introduce you to a few common
options, and show you how to use these files.

.cshrc

.cshrc and .login basically do the same thing, except that .cshrc is read first, and .login
is only read in the login shell. I actually don’t know anyone that uses .login, but I’m
sure there’s a use for it. .cshrc is typically used to setup variables that the system may or
may not use and things called aliases. Aliases are variables that are basically shortcuts
to execute commands. For example, lets create an alias for the command ls -l using the
command line:

% alias ll ’ls -l’

After hitting enter, type ll. You should get a long list of all the files in your current
working directory. Doing this is quite useful, but defining an alias this way means that
the alias is only good for your current shell session. If you startup another one, i.e. by
typing

% xterm

1

mailto:dpawlows@emich.edu

and pressing enter, you’ll notice ll is no longer defined. They way to get around this is
by putting the alias in a startup file that is executed each time you start a shell session,
such as .cshrc.

Here is an example of a basic .cshrc file.

#!/bin/csh

Sample .cshrc file

set history=200

setenv EDITOR emacs

set path = (. ~/bin /usr/local/mpi/bin /usr/local/bin

/opt/local/bin /opt/local/sbin ${path})

if ($?prompt) then

set prompt=’$user@${host}:%~>> ’

endif

alias emcas emacs

alias emasc emacs

alias emcsa emacs

alias h history

alias j jobs

alias l ’ls’

alias ll ’ls -l’

alias la ’ls -a’

setenv term xterm-color

setenv CLICOLOR 1

setenv LSCOLORS cxfxcxdxbxegedabagacad

This .cshrc file sets a few variables, a few aliases, and changes the look of the prompt.

The first variable, history, is used by the history command. This sets the default number
of commands for history to remember.

The second variable, EDITOR, is used by the system whenever Linux wants you to edit
text. Linux knows that you prefer to use emacs. In this case, EDITOR is an environment
variable, which means that its scope extends beyond the current shell. Any program that
is called by the shell will inherit the value of EDITOR.

Next, the path is set. Path stores information telling Linux where to look for executable
files. This way, you don’t have to actually be in the directory where the executable is
in order for it to work. Linux wouldn’t work very well if you had to copy ls to every
directory that you wanted to list files in.

After that, Linux checks to see if a prompt has been defined. ?prompt is a variable

2

that returns 1 (or true) if a prompt can be defined. If so, then the code within the
if statement is executed. The first thing done is to actually set the prompt. Mine is
sort of complicated, but it basically prints out username@hostname:’current working
directory’>>. The ’%∼’ is interpreted as ’print current working directory’.

The next lines setup a few handy aliases. I misspell emacs alto.

Finally, the last lines tell the shell that you want files and directories to be color coded
when you list them using ls. You can assign any color you want to different types of
files. That’s what that long line that looks like a bunch of garbage does. Take a look at
http://chuck.emich.edu/dpawlows/computational to see how to set those.

There are lots of other options that you can put in the startup files, but these will get you
started.

Restarting your startup file
When you make changes to .cshrc, you don’t have to start a new shell session to make
the changes take effect (most of the time). Instead, you can use the command

% source .cshrc

which re-executes the file.

.emacs

When you start an emacs session, emacs will look for the file .emacs in the home direc-
tory and execute it if it exists. When we first talked about emacs, I mentioned that you
can define your own commands by binding them to a key sequence. This is where you
would do that, so that those key-bindings automatically exist each time you use emacs.
Below is a sample .emacs file.

3

http://chuck.emich.edu/dpawlows/computational

;; Set up the keyboard so the delete key on both the regular keyboard

;; and the keypad delete the character under the cursor and to the right

;; under X, instead of the default, backspace behavior.

(global-set-key [delete] ’delete-char)

(global-set-key [kp-delete] ’delete-char)

;Use C-l to go to a specific line number

(global-set-key "\C-l" ’goto-line)

;;use C-t to start spell checking

(global-set-key [(control t)] ’ispell-buffer)

;; Enable wheelmouse support by default

(cond (window-system

(mwheel-install)

))

;; Visual feedback on selections

(setq-default transient-mark-mode t)

;; Always end a file with a newline

(setq require-final-newline t)

;; Turn on font-lock mode(language specific colors and

;; Settings) for Emacs

(cond ((not running-xemacs)

(global-font-lock-mode t)

))

;; Copy to the pasteboard

(defun pbcopy-region (beg end)

"Copy the region to Mac OS X pasteboard using shell command ’pbcopy’"

(interactive "r")

(shell-command-on-region beg end "pbcopy"))

(global-set-key (kbd "M-c") ’pbcopy-region)

There are many, many commands that emacs can handle. If you can think of something
that you want to do, chances are that you can do it. The syntax for binding a key
combination is a bit tricky. A good place to start if you want to add something is to
google it, as it’s likely that someone has asked the same question before.

Other Startup Files

As mentioned there are other startup files that can be used. One of the most widely used
is .Xresources. This file sets preferences for fonts, colors, and geometery of Xwindows,

4

including your xterminal and your emacs windows. This is only useful on your local
machine though, as you don’t want your window to change when you login to a remote
machine. If you are using a windows machine with putty, you can set these preferences
in the putty configuration screens.

When you logout, Linux reads a file called .logout if it exists. This is not used extensively,
except to print neat “goodbye” messages when people log out.

5

